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Abstract 

Independent Component Analysis (ICA) has been proven to be a very successful 

method for separating mixed signals blindly. ICA works by using the assumption that 

signal mixtures are combinations of independent signals. Up to now, ICA has been 

primarily used to separate signals where multiple amplitude combinations of these signals 

exist. The most popular of these ICA methods is Blind Source Separation (BSS). This 

thesis will expand on this to use the theory of ICA to separate mixed signals that are 

mixed by a beamformer. A new algorithm will be developed that combines BSS and a 

new blind beamforming method to provide an estimate of the original unmixed signals 

and simultaneously learns their corresponding directions. This will all be performed 

without using any a priori knowledge about the source waveforms or their directions. 

Results from this algorithm were very promising and worked to separate multiple 

unknown signals that propagated from different unknown directions. Signal to Noise and 

Interference Ratios (SNIR) of the estimated signals, were found to significantly improve 

using this algorithm along with accurate estimates of their directions. BSS was also used 

in the algorithm to speed up convergence time and provide cleaner versions of the 

estimated signals. This algorithm was also shown to work well for wideband signals by 

using wideband network 
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Chapter 1.     Introduction and Overview 

1.1    The Problem 

In underwater environments, boats, machinery, sea life and other environmental 

sources generate many acoustic signals. Depending on the listener, some of these passive 

sounds may be important and some not. For example, it may be desirable to listen to boat 

or machinery noise in which the environmental noise needs to be suppressed. 

Environmental scientists may want to remove the boat and machinery noise to listen to 

environmental noise. Whichever the case, the listener must remove the unwanted signals 

from the mixture in order to get a good estimation of the signal emitted from the desired 

source. In this same application it may also be desirable to find the direction of the 

source along with an estimate of the signal waveform. 

All of the above applications are concerned with passive sources, which means 

that no a priori knowledge of the signal waveform and their directions are available. 

Without this a priori knowledge, the signals themselves and their directions are not 

known. The spectral characteristics may not be known. The only assumption that can be 

made in order to separate the signals is that they are statistically independent. 

The problem that this thesis will address is to separate multiple sources that are 

naturally mixed as they impinge upon an array. This thesis will focus on separating 

signals from unknown far-field mixtures and finding their corresponding directions by 

using the properties of Independent Component Analysis assuming the number of sources 

is known. No a priori knowledge of the sources waveforms and their directions will be 

used. 

1 



1.2    Traditional Approaches 

In underwater environments, the most common approach to removing unwanted 

signals from mixtures is the use of beamforming and filtering. Filtering is ineffective if 

the unwanted interference spectrum coincides with the desired signal spectrum. 

Beamforming can separate signals that have coinciding power spectrums, but propagate 

from different directions. Beamforming works by using an array or a group of listening 

elements as a spatial filter. This method is efficient in suppressing unwanted noise 

signals that arrive from different directions and separating directional signals from non- 

directional signals. In some situations, the desired signal, whose direction is known, is 

mixed with noise signals whose directions are unknown. Many algorithms have been 

developed that use adaptive signal processing to find and remove the effect of these 

unwanted noise signals. Most of these adaptive algorithms use a priori knowledge about 

the desired signal and its location in order to accomplish this [1-4]. 

A recent method for separating mixtures of signals is known as Independent 

Component Analysis (ICA). ICA is an extension of Principal Component Analysis 

(PCA). While PCA minimizes the correlation between components, ICA works to make 

the components statistically independent. Since independence is a much stronger 

criterion that correlation, sources can be separated as long as they are statistically 

independent [5]. Blind Source Separation (BSS) has been the most promising application 

of ICA, in which signals are separated by using higher order statistical moments or 

Information Theoretic criteria. Unlike filtering, BSS can separate signals that have 

coinciding power spectrums but have different higher order spectra (polyspectra). So far 



these algorithms work well in separating mixtures of signals; however, they give no 

information about the location of the individual sources. 

Recently, blind beamforming techniques have been developed to suppress these 

unwanted noise signals without using any a priori knowledge of the desired signal's 

location. However, most of these blind beamforming techniques were designed for use 

with digital communications. These algorithms exploit different assumptions that are 

only applicable to communication signals [1-4]. In many applications, such as passive 

sonar, the desired signal does not satisfy the assumptions of communication signals, in 

particular, no a priori knowledge of the signal waveform or class of signals is available. 

Communication signals tend to be constant modulus (constant envelopes) and also tend to 

be cyclostationary, which is defined as having periodic statistical averages [5].   Sonar 

signals do not have these properties and have arbitrary amplitudes and widely varying 

power levels.   Some algorithms have been developed to learn the direction of sources by 

adjusting the location of the main beam until the power of the output is maximized. 

Unfortunately, this algorithm only works for finding the direction of a desired source that 

has more power than the background noise. It can also be used to remove the effects of a 

high power source so that the lower power sources can be found. These algorithms, in 

general, are not designed to separate similar power signals from far field mixtures. Other 

algorithms have also been developed to separate these unknown signals by using a 

combination of beamforming and BSS; however, the directions of the sources still remain 

unknown. 



1.3    Thesis Overview 

This thesis is split up into multiple parts. Chapter 2 is a background chapter that 

presents information about existing techniques. This background chapter will review the 

history and major concepts of arrays, beamforming and some traditional adaptive 

beamforming algorithms. Current blind beamforming algorithms and BSS techniques 

will also be introduced and discussed. Chapter 3 introduces the new ICA blind 

beamforming algorithm that is based on statistical independence for both narrowband and 

wideband signals. Chapter 4 presents simulations and results from the use of the 

algorithm. The final chapter will deal with future work in this field and conclusions. 



Chapter 2.     Background 

2.1 Overview 

This chapter presents a review of traditional methods that are used in array 

processing and source separation. This chapter starts out with a review of arrays and 

beamformers. Adaptive beamforming and blind beamforming methods are also 

introduced and discussed. This chapter ends with the introduction and review of current 

BSS techniques. These reviews will give the mathematical framework for the ICA blind 

beamformer to be presented in Chapter 3. 

2.2 Arrays and Beamformers 

Beamforming is one of the most common methods used to locate the directions of 

sources in both acoustic and electromagnetic wave propagation. It is also a powerful tool 

in removing unwanted noise sources that are located in directions other than the direction 

of the desired source. Beamforming in acoustics date back to before World War I [6]. 

Before technology was developed to handle the signal processing for beamforming, the 

human brain was used. Today beamforming is generally done in discrete-time with 

electronics and computers. 

The oldest and simplest method of beamforming is known as time-delay 

beamforming. As technology grew, it became just as easy to implement phase shifts for 

beamformers, which became the preferred method in beamforming for many adaptive 

algorithms. Phase shifts are commonly used because many applications have been 



written for communications in which the signals tend to be narrowband. Array 

processing has become a large and substantial field in which many modern techniques are 

being developed. Some of these modern techniques include beamforming in the 

frequency domain and eigenvalue analysis [7]. This section will concentrate on time- 

delay beamforming in order to lay out the concepts and mathematics needed for the ICA 

Blind Beamformer. 

2.2.1    Representation of Array Inputs and Outputs 

In order to accomplish spatial filtering, either directional elements or an array can 

be used. For the purposes of this paper, arrays will be used since the directionality can be 

changed without any physical changes to the listening or transmitting devices. An array 

consists of a group of listening or transmitting elements that are positioned at different 

locations in space. The rest of this thesis will concentrate on arrays with omni-directional 

listening elements.   In the case for acoustics, the elements can be hydrophones, 

microphones, accelerometers, ect. Antennas of all forms are generally used for 

electromagnetic waves. Figure 2.1 shows a linear array that has N elements spaced an 

equal distance apart, d, on the same axis with K sources impinging on it. The parameters 

9x,92...9k are the angles between source positions and the perpendicular axis of the 

array. The other parameter, 0O, is the steering angle that will be discussed in the next 

section. 
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Figure 2.1 - iV-element Array with K Sources. 

In both acoustics and electromagnetic propagation, the sources generally emit 

non-planar waves. However, a widely used simplified assumption for far-field array 

processing is that the waves propagate as plane wave across the array. It will be assumed 

in this thesis that the array is in the far field; hence this thesis will use the above 

assumption. The array in Figure 2.1 receives all K sources mixed together; however, 

each element will receive the sources advanced or delayed with respect to each other. 

These advances and delays are determined by the speed of propagation, c, and can be 

written as 

Tu = 
4cos(0y) 

(2.1) 

where dt is the distance from the /   element to a reference point and 9} is the angle of the 

7th source with respect to the array line. The reference point can be at any location on the 



array and is usually set to the center of the array.   Each element of the array will now 

have a combination of all the sources and can be written as 

K 

xl(n) = YjsJ(n-Tij) + nl(n), (2.2) 
7=1 

where n,(«) is additive noise added to the z* element which is statistically independent 

with all sources and between elements.   It should also be noted that for narrowband 

signals (j-«1), Equation 2.2 can be written with phase shifts instead of time shifts, 

which can make the math easier for some applications. 

7=1 7=1 V 
+ n»      (2.3) 

2.2.2    Beamformers 

In order to use an array as a directional spatial filter, the outputs must be 

combined in order to take advantage of arbitrary delays that are induced by the 

propagation across the array. The oldest method to do this is known as the delay-and-sum 

technique as shown in Figure 2.2. The delay-and-sum method is still used today for some 

wideband signal processing applications and will be the method used for the ICA blind 

beamformer. 
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Figure 2.2 - Time Delay Beamformer. 

This method works by adding delays to the elements of the beamformer in order to undo 

the delays that are induced on the array from directional sources. The output of the 

beamformer can be written as 

X») = 2>Axt(»-7X*)), (2.4) 
*=i 

where T is the time delay and w* is an element weight that is used for beam shading, 

which can be used to change the beam shape. For purposes of this paper, all of the 

weights will be equal and set to jj, so that the output of the array will have roughly the 

same amplitude as the input. The time delays are chosen in order to steer the main beam 

and are found by 

T(k) = = (k-l)dsm(0o)/^ (2.5) 

where 60 is the desired steering angle perpendicular to the array line as shown in Figure 

2.1. 



For narrowband signal processing, the time delays can again be replaced by phase 

shifts. This is the common method used with adaptive beamforming because many 

communication signals are narrowband. The output of this phase-shift beamformer can 

now be represented as 

y(n) = ]T WJXJ (») = ^ X XJ (") exP 
j=\ j=\ 

■j2nfdtcos{60) 
(2.6) 

The weights in Equation 2.6 are now complex and represent phase shifts. In matrix form 

Equation 2.6 can be written as 

y(n) = VtTX(n), (2.7) 

where W = [w,    w2    ...   wN J is the weight matrix and X(n) = [x{(n)   x2(«)   ...   xN(w)f 

is the element matrix. 

Beamforming is a frequency dependent process. Array gain and beamwidth of a 

fixed array is a function ofd/X, where d is the fixed element spacing. Hence, as X 

decreases (frequency increases), the array gain of the side lobes increase and the beams 

become narrower. This is not a problem for narrowband signals; however, for wideband 

signals, this frequency dependence must be taken into account. To compensate for this 

problem, the delays in time-delay beamforming can be replaced with tap-delay lines [8- 

10]. Figure 2.3 shows the block diagram for this process with JV elements and K taps per 

tap-delay line.   The weight matrix can now be written as 

W = [wj    w2   w3    ...   WJVJ", where w, =[w(1    wi2    wi3    ...   wiKJ. The weights 

are then chosen in order to undo the frequency dependence of the beamformer. This 

method is commonly used for wideband adaptive processors. Another method to 

compensate for this problem is to bandpass the elements with a bandpass network and 

10 



perform beamforming separately on the signals from each frequency bin. This method 

uses a bandpass network to convert a wideband signal into multiple 'narrowband' signals, 

where the frequency dependence can be ignored. An algorithm to do this will be shown 

in greater detail in Chapter 3. 

x,(n)^~ 

x>(n) 

XNM 

* z-1 > z-'   ► > r' 

£}—► £—K2 

> z:1 

"2(K-1) 

-KS)—► ;s)—►(£) 

* r1  ► z-1 * 
' ' ' ' 

W1(K-1) W1K 

E^- S)—KS 

SUM 
Beamformer s(n) 

Output 

Figure 2.3 - Wideband Beamformer with Tap-Delay Line. 

2.3     Adaptive Beamforming 

One of the advantages of using beamforming to separate signals is that the nulls 

that are formed in the beam patterns can be used to attenuate directional signals. In the 

late 1950's, P.W. Howells developed an Intermediate Frequency (IF) Sidelobe Canceller, 

which worked to automatically place a null in the direction of a jammer [11]. This 

canceller used a two-element array and adjusted one delay to remove the unwanted 

11 



signal. In 1967, the first Least Mean Square (LMS) algorithm was developed for 

adaptive arrays, which eventually become known as the optimum Wiener solution for 

stationary inputs [11]. Other algorithms have been developed to improve the adaptive 

beamforming problem including the use of constraints. The following sections will 

present the basic LMS algorithm as presented by B. Widrow in 1967 [12]. Additionally, 

constraints will be discussed in order for the reader to get a full picture of adaptive 

beamforming. 

2.3.1 The LMS Adaptive Beamformer 

Adaptive Antennas are beamformers whose phase shifts are adjusted until they 

satisfy some parameter. Figure 2.4 shows the general block diagram for an adaptive 

beamformer. The formation of the output signal, y(n), was shown in Equation 2.7 and is 

repeated for convenience below. 

y(n) = WrX(n). (2.8) 

The error between the desired signal and the estimated signal can be written as 

e{n) = d(n)-WTX(n). (2.9) 

The adaptive algorithm works by minimizing the mean-square error, which is given as 

E^{n)}} 

This mean-square error can be expanded as 

E{e2 (»)} = E\d(ri) - WTX(n))2}= E{d2 (n) + Wr X(«)Xr («)W - 2d(n)VfTX(n) 

E{d2 («)}+ WrO(x, x) W - 2WT<J>(d,x), 

where 

(2.10) 

E[ } is the expected value as presented in [5]. 

12 



<D(x(n),x(n)) = E{x(n)XT (n)}=E 

'^OO^O)     xx{n)x2{n)    •■■    xx{n)xN(n) 

x2{ri)xx{ri)    x2(n)x2(n)    •••    x2(n)xN(n) 

xN(n)xx(n)   xN(n)x2(n)   •••   xN(n)xN(n) 

and 

®(d(n),x(n)) = E{d(n)X(n)} = E- 

d(n)xl (n) 

d{n)x2(n) 

d{n)xN(n) 

The symmetric matrix, <f>(x(ri),x(n)) 

is the cross-correlation matrix between all of the elements of the array, and column 

matrix,<b(d(n),x{ri)), is the cross-correlations between the array elements and the desired 

signal. The mean-square error is a quadratic function of the weight matrix, W, and 

therefore has only one global minimum. The goal of this adaptive algorithm is to find 

this minimum. 

x,(n) ^~ 

Xj(n) ^~ 

X3<n) ^~ 

*.(") ►" 

SUM 
Beamformer    s(n) 
 ► 

Adaptive 
Control 

Algorithm 

Output 

Desired 
Response 

d(n) 

Figure 2.4 - Adaptive Beamformer. 
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The recursive method that is commonly used for adaptive beamforming is known 

as the gradient-decent or steepest decent based LMS algorithm [11]. This algorithm 

works by first determining a cost function, J(n), which usually is a performance measure 

caused by the choice of W. Here, J(n) is the mean squared error as described before. In 

order to find the direction to the global minimum, the gradient, VJ(n), with respect to 

W, of the cost function must be found. Taking the gradient of the mean square error 

results in 

V£{e2(«)} = 2*(JC(/I),X(/I))W-20(JC(H), </(«))• (2-11) 

At the global minimum, the gradient is equated to zero and this then leads to the Wiener- 

Hopf equation, 

<p{x(n),x(n))\Vopt = fl>(*(«), d{nj) (2.12) 

where W0/), is the optimal weight vector [11]. 

According to the steepest-decent method, the update equation is written as 

W(« + l) = W(«) + ^[-VJ(«)], (2.13) 

where ju is the step size parameter [11]. Since it is impractical to calculate the expected 

value, the gradient vector of the mean square error, J(ri) = £{e2 («)}, can be 

approximated by the instantaneous gradient vector obtainable from the approximation 

J(n) = e2 (n). This instantaneous gradient can now be found to be 

VJ(») = Ve2(n) = 2e(n)Ve{n) = 2e{n)v[d(n) - Wr(w)X(/i)] = -2e{n)X(n).      (2.14) 

Substituting this estimated gradient into Equation 2.13 yields 

W(« + l) = W(w) + //e(«)X(w). (2.15) 

14 



This estimate of the gradient is now considered noisy, however, as n -> as, the expected 

value of W converges to Wopl if 0 < ju < —, where Amax is the largest eigenvalue from 
max 

the matrix <b{x(n),x(n)) [11]. 

The algorithm in Equation 2.15 minimizes the noise added to the desired signal by 

placing nulls in the directions of the noise sources. This algorithm requires that the 

desired signal be known in order to minimize the mean-square error. Having a reference 

signal that is correlated to the desired signal can also be used which lessens this 

restriction [13]. In order to obtain a correlated reference signal, a priori information 

about the signal must be known. In this thesis, it is assumed that no a priori information 

about the sources is known, which rules out these types of algorithm to separate passive 

sources. 

Another advantage to the IC A blind beamformer is that traditional adaptive 

beamforming is based on second order statistics (mean square error, maximization of 

SNR, minimization of variance), where the ICA blind beamformer uses implicitly all 

higher moments. This provides better separation of non-Gaussian signals. 

2.3.1 Constraints 

The LMS algorithm places nulls in the direction of the noise sources, but has no 

control on where the main beam gets positioned. In 1972, O.L. Frost developed a 

constrained LMS algorithm in order to keep the main beam focused in the direction of the 

desired source [8]. Assuming the direction of the source is known, this is done by 

keeping 

15 



W"(/i)s(0) = /, for all« (2.16) 

where s is the steering beam,/is a constant, <p is the electrical steering angle and H is the 

Hermitian transpose. The steering beam is represented as s(^) = [l   e'1*    ■■■   e'
J(M~^\ 

and represents the vector with a main beam in the direction of the desired source. The 

electrical angle can be found from the incidence angle of the desired source by 

,    2nd .        -7t n 
6 = sin#, <9 < — 
Y      X 2 2 

so that -7t <6<n with d < — , Y 2 

(2.17) 

where d is the element spacing and X is the average wavelength of the source. These 

constraints only work when the direction of the source is known. In this thesis, the 

directions of the sources are unknown which prevents constraints from being used. 

2.4     Blind Beamforming Methods 

Blind beamforming is a problem with a goal of reducing the effects of interfering 

noise signals without knowing the directions of sources impinging onto an array. The 

term "blind" signifies that both the directions of the sources as well as the sources 

themselves are unknown. Many algorithms have been developed for modern 

communications, which use cyclostationarity, constant modulus and other properties to 

find the direction of the unknown sources [1-4]. These algorithms use certain 

assumptions that only apply to communication sources and not to unknown passive 

sources. To get around this problem, power maximization can be used in blind 

beamformers in order to find the direction of the source with the most power. This 

works well in finding sources but does not work well when there are multiple sources 
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with similar power. The following sections will present some of these blind 

beamforming methods. 

2.4.1 Cyclostationarity 

One of the first blind beamforming algorithms was developed to take advantage 

of cyclostationarity. Cyclostationarity applies to signals that have periodic statistical 

averages [5]. For wide sense cyclostationarity, the mean and variance can be time 

varying and periodic [5]. Many digital modulated signals are considered cyclostationary 

and have either a cycle frequency (frequency of time-varying statistics) double to the 

carrier frequency, a multiple of the baud rate or both [1]. This blind beamforming 

algorithm takes advantage of this properly because most interfering noise signals do not 

have these cyclostationarity properties. This algorithm requires that the signal of interest 

or interfering signal have cyclostationarity properties. For passive sources, there is no 

guarantee that the signals will have cyclostationarity properties.   It is therefore not a 

practical method to separate passive sources. 

2.4.2 Constant Modulus 

Most digitally modulated signals including FSK, PSK and 4-QAM have constant 

envelopes. A constant modulus blind beamformer works by updating the taps in order to 

make the output have a constant envelope. As with the cyclostationarity property, most 

noise and interfering signals do not have constant envelopes. This algorithm works well 

when finding one digitally modulated signal in noise. It can be used to find more than 

one digitally modulated signals if the signals are statistically independent. Multiple 
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signals are removed in stages where the first stage removes one signal from the mixture. 

The extracted signal is then removed from the mixture for further processing. The next 

stage repeats until all of the signals are removed [1]. This algorithm has a slow 

convergence rate and works mostly for digitally modulated signals. This algorithm 

would not work on passive sources since it cannot be assumed that the sources have a 

constant modulus. 

2.4.3   The JADE Algorithm 

In 1993, J.F. Cardosa and A. Souloumiac developed an 'off-line' beamforming 

technique known as joint approximate diagonalization of eigenmatrices (JADE) [14]. 

This algorithm is a two-step process, which separates multiple directional signals by 

exploiting the statistical independence of the sources. The first step exploits second order 

moments by "whitening" the array output vector, which results in the sources mixed by 

an unknown unitary matrix. The second step consists of estimating this unknown unitary 

matrix by "joint diagonalization" of the forth order cumulant matrices of the "whitened" 

data [21]. This algorithm has also been improved by J. Sheinvald in 1998 and M. Wax 

and Y. Anu in 1999 by finding the unitary matrix using a least squares approach [15,16]. 

JADE is considered a batch-processing algorithm because it requires the entire 

data set for processing.   This limits this algorithm to 'off-line' applications. This 

algorithm also results in a permutation of the outputs. This permutation limits the direct 

knowledge of the direction of the separated signal. This algorithm also separates signals 

based on second and fourth order moments.   The ICA blind beamformer that will be 

presented in this thesis will use all even order moments to blindly separate the sources, 
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which provides a better estimate of independence. The directions of the sources will also 

be estimated directly in the ICA blind beamformer. 

2.4.4   Power Maximization Techniques 

There are many blind beamforming methods that find the direction of the signal 

with the most power. The learning rule for maximizing power with the norm constraint 

for the adjustable weights is given as 

maxwffRw  subject to w^w = 1, (2.18) 

where w is the weight matrix and R = E\x(n)xH («)} is the autocovariance matrix of the 

data inputs. Recently, blind beamforming algorithms have been developed in order to 

satisfy Equation 2.18 for code division multiple access (CDMA) mobile communications 

[2]. Instead of using an adaptive algorithm to learn the ideal weights, the algorithm finds 

the eigenvector corresponding to the largest eigenvalue of the autocovariance matrix, R. 

The weight vector is then set to the corresponding eigenvector, which places the main 

beam in the direction of the source with the most power. Preprocessing is done on the 

mixtures of comparable power CDMA signals, which attenuates the undesired signals. 

The resulting power maximum is then the likely direction of the desired source. This 

algorithm works well for mixtures when the desired signal has the most power, but does 

not work as well when the signals have similar power. This algorithm does nothing 

beyond focusing the main beam on the desired signal in order to minimize the noise level 

from the interfering signals. It does not use the positioning of the nulls in the beam 

pattern to remove the interfering signals. 
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In 1996, Chit-Sang Tsang and R. T. Compton developed an adaptive blind 

beamformer that works on power maximization [17].   They presented an algorithm that 

can be used to separate a strong interfering signal from a weak signal using a two- 

element array. This algorithm uses time delay beamforming to steer the main beam or a 

null in the direction of the signal with the most power. This algorithm is the basis of the 

ICA blind beamformer and will be improved by using statistical independence as a 

criterion. 

The following derivation will assume an antenna array with N element and a 

uniform element spacing of L. For narrowband signals, the element spacing is commonly 

set to half the wavelength of the carrier frequency. For wideband signals, the element 

spacing is usually set to half the wavelength corresponding to the center frequency or the 

largest frequency. The output of the antenna elements are connected to time delays and 

then summed. The algorithm works by adjusting the time delays, which changes the look 

direction. 

The signals from the individual elements can be represented in matrix form as 

x = [*!(t)   x2(t)   •■■   xN(t)\ . The signals from the elements are then individual 

delayed and can be rewritten as y = [x, (t - dx)   x2(t-d2)   ■■■   xN(t - dN)f = 

\)>\ (0   ^2 (0   ""   yN (0 jr • The output signal from the beamformer is 

s(t) = y,(t) + y2(t) + ... + yh/(t) = x](t-dl) + x2(t-d2) + ... + xN(t-dN). (2.19) 

The times delays d\t di,... , d^ adapt in order to maximize the power of the output. The 

power of the output (also the cost function) for real signals can be written as 

J(t) = E\s2(t)} . (2.20) 
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In order to make this an adaptive process, the gradient must be taken of the cost function, 

J{t). 

VJ(t) = VE{s\t)} = VE\xx(t-dx) + x1(t-d1) + ... + xN(t-dNjf} (2.21) 

The gradient can then be expanded into its individual derivative components. The 

derivative with respect to the first delay d\ is written in Equation 2.22. 

dJ{t) 
ddx 

= E\^-{xl(t-dl) + x2(t-d2) + ... + xN(t-dN))2\ 

= 2EUxx(t-dx) + x2(t-d2) + ... + xN(t-dN))—xx(t-dx)\ 

= -2EUxx(t -dx) + x2(t -d2) +... + xN(t -dN))-xx(t-dx)i 

(2.22) 

= -2E{s(t)yM 

where yx (t) = —xx(t-dx). An important step in the above derivation is the use of the 
dt 

chain rule, which results with xx (t - dx) = -—xx (t - dx). From this derivation it is 
ddx dt 

easy to see how the other time delays can be found and are listed below. 

d-^l = -2E{sm(0] 
odx 

yg—imM-)] _,,. dd2 (2.2J) 

^l = -2E{s(t)yM 
ddN 

Since it is impractical to do averaging to get an estimate of the expected value, the 

expected value will again be dropped as with the Least Mean Square algorithm. The 

instantaneous gradient is now 

21 



odx 

dd2 (2.24) 

ddN 

This estimate of the gradient is again considered noisy; however, as t -» oo the estimate 

should converge to the best possible delay under ideal conditions. The adaptive 

algorithm in discrete form can now be written in Equation 2.25. 

dx (n +1) = dx (n) - 2jus(n)yx (n) 

d2(n + \) = d2(n)-2jus(n)y2(n) 

dN (n + l) = dN («) - 2fJs(n)yN (n) 

It can be noted that if the step size parameter, ju, is a positive number, then the algorithm 

maximizes the power. If/i is chosen to be negative, it will minimize the power. In other 

words, a positive JJ. will attempt to move the main lobe in the direction of the source and a 

negative fj. will attempt to place a null in the direction of the source. This algorithm 

works well in finding either the direction of one main source in noise or suppressing a 

high-power source in order to listen to a low-power source. This algorithm works well 

under these circumstances; however, this algorithm cannot remove noise sources that 

have the same power as the desired signal. The ICA blind beamformer that will be 

presented in the next chapter will be a continuation and improvement of this algorithm in 

order to separate signals with similar power levels. 
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2.5     Other Methods 

2.5.1    Blind Source Separation 

In 1986, Jeanny Herault and Christian Jutten developed an algorithm based on 

Neural Networks that they claimed could blindly separate mixtures of independent 

signals [18]. This new algorithm began a new era in signal processing known as blind 

source separation (BSS). There algorithm worked by setting a non-linear cross- 

correlation function to zero, instead of the linear cross-correlation. The learning rule for 

this algorithm is 

AWy oc f(u,)g(uj)T fori*j, (2.26) 

where/and g are odd non-linear functions and ut is the zth output. The diagonals in W 

are set to zero in this algorithm. The output vector is found for every iteration by 

u(«) = (l + W)-1x(«), (2-27) 

where x(«) = [*,(")   *2(«)   *s00   -   ^ («)F is the input vector, and I is an identity 

matrix. These non-linear functions are important to this algorithm because linear 

techniques only exploit second-order moments, which do not truly separate signals that 

have non-Gaussian distribution functions. Non-linear techniques take advantage of these 

higher order cross-moments and in turn help create true statistical independence. This 

algorithm was shown to only work on specific types of sources; however, it opened the 

door to a whole new set of algorithms. 

In 1995, Anthony J. Bell and Terrence J. Sejnowski developed an algorithm that 

separated mixed sources based on Information Theory, which became the basis for 

modern BSS methods [19]. Their algorithm learned the unmixing matrix by maximizing 
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the mutual information between the inputs and the outputs. Their learning rule which 

used the non-linear function, tanh, is 

AW oc [wr ]"' - 2 tanh(\Vx)xr, (2.28) 

where x = [x,    x2    x3    ...   xN]T is the input vector and W is the learned unmixing 

matrix. This algorithm worked well in separating sources that had both super-Gaussian 

(negative kurtosis) and sub-Gaussian (positive kurtosis) distribution functions. 

In 1997, S. Amari, S.C. Douglas, A Cichocki, and H.H. Yang improved Bell and 

Sejnowski's algorithm. Their new algorithm used a natural gradient approach to 

minimize the Kullback-Leibler distance between the individual output PDFs and product 

of the output PDFs [20]. The Kullback-Leibler distance is a measure of dependency 

between the output distributions [21]. Their learning rule is 

AWocIl-ytuV] W, (2.29) 

where u = [w(    u2    w3    ...   uN\ is the output vector. This new algorithm sped up the 

processing time by removing the need for a matrix inversion as presented in the Bell and 

Sejnowski's algorithm. 

All of these information theoretic BSS algorithms, known as infomax algorithms, 

work by learning an unmixing matrix, W, which satisfies WA = PD where A is the full 

rank mixing matrix, P is a permutation matrix and D is a diagonal matrix. The 

permutation matrix, P, prevents a direct estimate of what sensor or what direction the 

signal came from. A block diagram of a general BSS algorithm is shown in Figure 2.5. 

It should be noted that before the data is sent through the BSS algorithm, the mean is set 

2 The non-linear function tanh() is commonly used in BSS because it works well in separating sources with 
multiple types of probability distributions. 
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to zero and if the data is known beforehand, the variance of each input is usually set to 

unity. The data is also sometimes uncorrelated first in order to speed up convergence. 
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Figure 2.5 - Block Diagram For BSS. 

One of the limits to blind source separation is the restriction that no more than one 

signal can have a Gaussian distribution. This restriction comes about because the 

addition of two or more Gaussian sources results in a distribution that is still Gaussian 

[5]. Since Gaussian distributions are represented by second-order moments, not enough 

information can be extracted from the resulting mixtures for use in blind separation. 

2.5.2    Combination of Beamforming and BSS 

In 1995, Shaolin Li and Terrence J. Sejnowski proposed separating signals in the 

far field by combining beamforming and a BSS algorithm [22]. Multiple beams were 

fixed and aimed in different directions, which resulted in multi-amplitude combinations 

of the unknown directional signals. Since multi-combinations now existed, blind source 

separation could then be performed. This method works for narrowband signals but not 

for wide-band signals because of the frequency dependence of beamformers. To 

compensate for this problem, Li and Sejnowski designed filters with transfer functions 
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that were designed to undo the filtering effects of the beamformers. The source 

separation method used in the paper was the Herault-Jutten method. The probable reason 

for this selection was that the infomax algorithms were not developed yet. The Herault- 

Jutten algorithm could then be replaced with an infomax algorithm for better results. The 

main drawback to this algorithm is the permutations that are caused from the source 

separation algorithms. The permutations prevent the algorithm from directly estimating 

the directions of the incoming signals. 
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Chapter 3.     ICA Blind Beamforming 

3.1 Overview 

The techniques that were described in the previous chapter were all techniques that 

are currently used to separate signals blindly.   Depending on the applications, some of 

the techniques worked better than others. For passive sources with unknown locations, 

none of these algorithms gave adequate source separation while simultaneously finding 

the directions of the sources. In this chapter an algorithm will be presented to do source 

separation and direction finding simultaneously by applying an independence criterion to 

blind beamformers. It will be assumed in this thesis that the number of sources is known. 

Performing blind separation techniques without the knowledge of the number of sources 

is still an outstanding research problem [16, 23, 24]. 

3.2 ICA Blind Beamformer 

3.2.1    Independence Technique 

The independence-based blind beamformer presented here is similar to the power 

maximization techniques as presented in Chapter 2.4.4; however, it works for more than 

one directional signal. The goal of the independence technique is to minimize either the 

correlation or non-linear correlation between the two outputs of the algorithm. For 

example, if there are two signals from different directions arriving at the array, then the 

algorithm will place a beam in the direction of one source and a null in the direction of 

other interfering source. It will also do the opposite by placing a beam on the interfering 
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source and a null in the direction of the desired source. This method will find the 

direction of both sources and provide an estimate of the both signals. 

As with the power maximization beamformer, this algorithm will use the gradient 

descent search method. All derivations will be made for real signals. In the first case 

that will be presented, the algorithm will use a linear process, which minimizes the cross- 

correlation between the two outputs. The absolute value of the cross correlation between 

the outputs of two beamformers can be written as 

J(0 = 1^,(0*2(0)1, (3-D 

where i, (0 is the output of beam one and s2 (t) is the output of beam two. The absolute 

value is there because it is possible for the cross-correlation to become negative. If a 

source is located in one of the odd numbered sidelobes, the source will be received by the 

beamformer with a sign change. Because of this sign change, a negative cross- 

correlation will result. The absolute value will make the true minimum of the cost 

function in Equation 3.1 equal to zero. By compensating for this sign shift, the nulls 

from the beam pattern should be steered in the direction of the opposing sources and 

result in better statistical independence. 

In this section, the reference point for the array will be the center element of an 

odd element array (this algorithm can be easily expanded for a even-element array but 

will be left out for brevity). Keeping the reference point at the center of the array will 

eliminate additional delay terms at the array. If the reference point is not at the center, 

then an additional delay can result. These delays can be a problem for the cost function 

in Equation 3.1, if these delays become larger than the correlation time, x0, of the signals, 

where the correlation time is defined as the smallest delay that satisfies 
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E{x(t)x(t - T0)} = 0. If this occurs, then the signals will appear to be uncorrelated, which 

will result in a false convergence. The only disadvantage to using beamformers with a 

central reference point is that the process becomes non-causal, which can be compensated 

for by adding a buffer. The amount of the delay the buffer adds; however, is very small 

compared to the length of signals. The beam is then formed as 

hM = xllf + ^dk)+...xe(t) + ...xN((-ypdk) (32) 

where xc (/) is the center element. As before, the gradient must be taken of the cost 

function, J{f), in order to make it an adaptive process. 

VJ(0 = V\E{sx (t)s2 (0 J = sgn[£[s, (t)s2 (0}]V£fe (t)s2 (f)} 

= sgn[£{lI(fÄ(O}]-v4xI(f-^rf0+... + xe(0+... + x^(r + ^i/1))*      (3.3) 

(Xl(t-^d2)+... + xAt)+... + xN{t + ^d2))} 

There are now two sets of delays for the separation of two signals, one for the estimate of 

each signal. The gradient of the first delay d\ is written below. 

^ = sgn[£{i, (t)s2 (/)}] • E^- 5, (f)s2 (0J 

= sgn[£{j,(0i2(0}]- 

=sgn[^^o^(o}]^k(o^-(x1(/+«^)+...+^(^-i¥1^))l 

(3.4) 

ddx 

8 
= sgn [£fc(/)i2(0}]-£52(0|(x1(r + ^^)+...-x,(f-^rfI)) 

dt 

= sgn[^1(Oi2(O}]-4a(O(1¥I>'n(0+----1¥1^(4 

where > A (0 = — x (t-dk). The estimate of the second signal can also be easily 
p dt   p 

proved and is listed below. 
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^ = sgn[E{s,(t)sM]-E{sM^y2Ath...-^y2M} (3.5) oa2 

The expectation is again dropped for the same reasons as described in Chapter 2. The 

expectation is also removed from the sign operator. Chapter 3.2.4 will propose a method 

to determine sgn^ji, {t)s2 (0}]> which will provide better results. The adaptive 

algorithm in discrete form is shown in Equation 3.6. 

^(« + l) = c/1(»)-//-sgn[51(^(«)]^2(n)(^>^«)+...-^j>1/VW) 

J2(« + l) = ^(«)-//-sgn[i1(«)i2(«)]J1(»)(^>21(«) + ...-^^W) 

It should also be noted that the step size parameter, fj., should be a positive number in 

order to minimize the cross-correlation. A negative ju will maximize the cross- 

correlation; hence it will position the two beams in the same direction. This algorithm 

can be easily expanded for more than two signals. The discrete algorithm for this is listed 

below with M representing the number of sources and/? representing the beam number. 

^(« + l) = Jp(«)-//-(^^1W + ...-^j>pj4isgn^(^(«)]-^(")       (3-7) 

This algorithm minimizes the cross-correlation between the beam of interest and all the 

other beams. 

The above derivations were for an algorithm that minimizes the cross-correlation 

between the beams. Minimizing the cross-correlation will only minimize the second 

cross-moment while the other higher order moments can still be non-zero. For true 

statistical independence, all higher order cross-moments should be zero. One way to set 

all of the higher order moments to zero is to use a odd non-linear function, J[-), in the 

algorithm as with Independent Component Analysis (ICA). If the cost function, J{f), is 
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changed from J{t) = \E{sx{t)s2{t)\ to J(t) = \E{sx(t)f(s2(t))] , all of the even higher 

order cross moments will be considered. The odd higher order moments will be assumed 

to be zero if the distribution functions of the sources are symmetric with zero mean. A 

common non-linear function that is commonly used is tank. The Taylor Series 

Expansion for this function is 

tanh(x) = x-\x3+±x5+---. (3.8) 

By substituting/*) = tanh(x), the non-linear cross correlation can be expanded as 

£fe(0/fe(0)} = £&(')■ ih (t)-\s2\t)+±s2\t) + -] 

= E{s{ (t)s2 (0} - \ E^ (t)s2
3 (0}+ £ 4i (0 V (0}+ 

(3-9) 

which is a combination of all the higher order even cross-moments as stated before. The 

gradient of this cost function with respect to the first delay is 

(3.10) 

^f = sgnfeft (/)/& (0)}] • E^ i, (0/fc (0)| 

= sgn[£{s1(0/(52(0)}]- 

= sgnfeft(/)/&«)}]• *{/& (0)^ (*, (' + (T? 4)+ ■ • • + x, (/ - ^ 4)) 

= sgn[£{Sl(/)/(S2(0)}]^^ 

=sgD[£{sI(/)/(*2(o)}]-^(oX^Ä.(0+...-ö^^(0j 

where yk(t) = —x (t-dk). The estimate of the second signal can also be easily proved 
p        dt   p 

and is listed in Equation 3.11. 
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^»sgn^CO/ftCOja-^feCO^^W+.-.-^^W) (3.11) 

(3.12) 

The adaptive algorithm in discrete form can now be written for the beams below. 

d2 (n +1) = d2 (n)-ju- sgn[s2 (»)/& (»))] • /(s, («))(^ j>21 («)+... - ^ y2N (")) 

It can be easily seen that the only major difference between the linear model and the non- 

linear model is the non-linear function acting on the source data. As with the linear 

algorithm, this can be expanded for more than two directional sources and is shown 

below. 

dp(n + \) = dp(n)-Mi^yM+----^KMiMh(n)Äs^)lf("^)   (3-13) 

This above equation minimizes all of the even cross-moments between the source of 

interest and the other sources. 

Since the adaptive algorithm is steering beams in order to minimize the non-linear 

cross-correlation between beams, it is possible that a beam may adapt to an empty signal 

space where all the sources are heavily attenuated. If the beam is focused on empty 

signal space, then the nonlinear cross-correlation will be near zero because the output of 

the beamformer will have very little amplitude. The independence algorithm presented in 

this section can be combined with another criterion to prevent this false convergence. A 

method to do this will be presented in Section 3.2.3. 

3.2.2    Direction Estimation using BSS 

It was shown in Chapter 2 that BSS could be used to separate signals when 

multiple unique combinations exist. Li and Sejnowski removed this limitation by using 
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beamforming in order to create unique combinations [22]. For narrowband signals, the 

only effect that beamformers have is amplitude adjustments, which is dependent on the 

direction of the signals. Therefore, the output of the multiple beamformers can be written 

as V = AS, where V = [v,    v2    ...   vN f is the output, S = [s,    s2    ...   sN J is the 

original signal matrix and A is an unknown NxN mixing matrix resulting from the 

beamformers. If the signals are wideband, then the filtering effects of the beamformer 

have to be incorporated in the algorithm, which generalizes the elements of the mixing 

matrix, A, to filters from constants. The mixing matrix will also have to incorporate time 

delays if the mixtures of signals are mixed and arbitrarily delayed. Algorithms have been 

written for both of these applications in many papers in order to find these unknown 

delays and unknown filters [25-27]. Since beamformers with central reference points are 

being used to create these combinations for narrowband signals, no delays will be 

created. 

In order for BSS to work, there has to be at least as many mixtures of signals as 

there are signals. Therefore, there must be at least N beams that are focused in different 

directions. Assuming that each signal has its own direction, there will be N unique 

mixtures. Since N mixtures are now initially formed, BSS can be used to separate these 

mixtures and return an estimate of the original N separated signals. For example, the 

outputs from the two individual beams, vl (f) and v2 (0, are used as inputs to the BSS 

algorithm which result in discrete outputs «, (n) and u2 («). Any BSS algorithm can be 

used for this application. For purposes of this paper, Armari's Natural Gradient 

Algorithm [20] will be used, which was described in Chapter 2 and is repeated below for 

convenience. 
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AWoc[l-/(uy] W, (3-14) 

This BSS algorithm learns an unmixing matrix, W, and uses it to separate the signals. It 

is again possible for the outputs to be permuted. This permutation is what limits the 

algorithm from directly estimating the directions of propagation. 

Now that N separated signals are formed from BSS, these signals can be used to 

estimate their corresponding locations by using a non-linear cross-correlation function. 

The estimate of the signal k is denoted by uk (n) or uk (t)\i=n. In order to estimate the 

direction of the signal, the non-linear cross-correlation, J(n) = E{f(uk (t))zk (t)\l=n, is 

maximized where zk (t) is the output from a separate movable beam. As in the previous 

section, this can be found adaptively by using the gradient-descent search method. The 

derivation for maximizing the non-linear cross-correlation between two signals is shown 

in Equation 3.15. 

dJ{t) 

ddx 
= £J~S,(0/(«2 ('))}' 

4/(«2 ('))£(*, (> + ^ dx)+... + x, (/ - ^ 4 ))l 
(3.15) 

= £{/(ii2(0)|(x1(f + ^rf1)+...-xJ,(r-^^))| 

The above algorithm works by maximizing the non-linear cross-correlation 

between the outputs of the individual beams. This algorithm can be expanded to learn the 

direction of any signal, uk (n). This is given in discrete form in Equation 3.16. 
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dk(n + l) = dk(n) + ß-f(ukwi^hM+----^hM) (3-16) 

It again should be noted that the step size parameter, ß, should be positive in order to 

maximize the non-linear cross-correlation. 

This algorithm works by using stationary beams to create multi-amplitude 

mixtures for which BSS is used to separate the signals. A separate movable beam is then 

adjusted in order to maximize the non-linear cross-correlation between the beam and the 

outputs of the BSS algorithm. The resulting beam patterns will have the main beams 

focused in the direction of the multiple sources. 

3.2.3    Combination of Independence and Direction Estimation Techniques 

Chapter 3.2.2 reintroduced Li and Sejnowki's algorithm, which uses stationary 

beams and BSS to estimate the unmixed signals. It was then expanded to use separate 

movable beams in order to estimate the directions of the respective signals. This 

algorithm does not take advantage of some of the properties of beamformer such as the 

placement of nulls. This section will combine this technique with the independence 

technique as presented in Section 3.2.1 to use the same beams to separate the signals and 

find their respective directions. 

The algorithm in Section 3.2.2 completely relied on the BSS algorithm to separate 

the signals. It would be advantageous to not only use BSS to separate the signals, but 

also use the beamformers to place nulls in the directions of the opposing signals. 

Combining the algorithms in Sections 3.2.1 and 3.2.2 will do this. If sk(t) is an output 

from a beam and ut (t)\     is an estimated signal from the BSS algorithm then by 
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maximizing E{f(uk(t))sk(t)}\i=n and concurrently minimizing \E\f(uk(t))s (r)|     , 
t=n 

where k± j, should separate the sources. This will maximize the non-linear cross- 

correlation between the beam outputs and the estimated signals. It will also minimize the 

non-linear cross-correlation between the beams and the opposing estimated signals. The 

adaptive algorithm for this is written in discrete form in Equation 3.17. 

</, (/i +1) = dx (») + /?■ /(«, (njJF?- >„(»)+...- ^ ylN (»)) 

-i«-sgn[i1(/i)/(«2(/i))]./(ii2(n))(M^I(/i)+...-^^(»)) 

- M ■ sgn[s2 (n)f(ux (»))] • /(«, («))(^i) >21 („) + ..._ UJ!> J>2A/ („)) 

(3.17) 

In the above algorithm, fj. and yö are both positive step size parameters. They can both be 

equal or they can be different depending on the application. In this paper, /j will be set 

smaller than ß in order to move the beam into the direction of the source with the 

constraint that the outputs of the beams should be independent.   As before, the algorithm 

can be expanded for more than two signals and is in general form below. 

dp(n + \) = dp(n) + ß-f(up(n)\^ypXn) + ...-^yJn)) 

-//■(^>p,W+...-^^W)Zs8n[Äp(n)/(ii/(/i))]-/(«<(^ 
(3.18) 

i=\(i*p) 

This algorithm separates these signals without using any a priori information about the 

incoming signal waveforms and their location. A block diagram for this algorithm is 

shown in Figure 3.1 for two beams using an TV-element array. 

There are many advantages to the algorithm in Equation 3.18 compared to the 

algorithm Equation 3.13. Since estimates of the original signals are found by utilizing 

BSS, maximization of the cross-correlation between the beams and the unmixed sources 
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becomes possible. This adds the constraint that the main beams should be focused on 

their corresponding sources. Another advantage to this algorithm is that the estimated 

signals become cleaner because the BSS removes any additional mixing due to the 

position of the beams. A third advantage will be discussed in the next section. 

x,(n)  ^~ 

Adaptive 
Control 

Algorithm 

•—r 

Adaptive 
Control 

Algorithm 

SUM 

SUM 

s.(n) 

BSS 

u,(n) 

s,(n) 

Uj(n) 

Figure 3.1 - Block diagram of ICA Blind Beamformer for Two Beams Using a W-element Array. 
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3.2.4    Step Size Parameter Control 

The step size parameters are important part of the convergence process, which 

were not discussed in much detail in the previous sections. In the last section, /j. and ß 

were chosen to be constants; however, they do not need to be. Both ju and ß can be 

adjusted during the process in order to optimize results. One way to do this is to increase 

ju and ß when the delay estimates are far away from the optimum solutions and to 

decrease them when they are close to the optimum solution. A measure of this can be 

found by utilizing the unmixing matrix from the BSS algorithm. Another advantage to 

using BSS for step size parameter control is that the sign of the unmixing matrix elements 

can be used to determine sgn[£{5 (ri)f(u: («)))J , which can be used to replace 

sgn[sp («)/(«, (n))\ in Equation 3.18. 

The unmixing matrix is a good reflection on how independent the estimated 

signals are from each other. If the signals are independent and the diagonals of the 

unmixing matrix are kept to unity, then the non-diagonal elements should be near zero. If 

the estimated signals still have combinations of each other, then the non-diagonals should 

not be zero. This is because the unmixing matrix is estimating the inverse of the mixing 

matrix.   The adaptive algorithm can then be rewritten for this below. 

dp(n + \) = dp(n) + ßp(n)-f{up(n)l^ypl(n)+...-^yJn)) 

-(^>)+--^vw) i>, (»)/(«>)) (3'19) 
i=\(i*p) 

The step size parameter, ju{n), can be found by utilizing these non-diagonal elements and 

can be written as 
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//„(/!) =-A/■*„(«), (3.20) 

where fi is a constant and 5P,<«) is the element of the unmixing matrix that is located in 

row/? and column i. If it is assumed that the each beam has a more of the desired signal 

than the other opposing signals, then the negative sign in Equation 3.20 is used to 

determine if the sign change occurred. If the sign of one of the elements in the unmixing 

matrix is positive and if the diagonal elements of the unmixing matrix are kept to unity, 

then the same element in the original mixing matrix is generally negative. If//,</») is 

positive, then the source is most likely located in the direction of a odd side beam where a 

sign change occurred. This estimate can be used to replace sgn[ip («)/(«, ("))] , which 

was given in Equation 3.18. This assumption decreases the computational load and can 

help speed up convergence. In order for this assumption to hold, it is recommended that 

ß be set to zero initially for a short period of time so that the main beams will be steered 

in the direction of the sources. Once the main beams are located in the direction of the 

desired sources, the independence criterion will attempt to steer the nulls in the direction 

of the opposing sources with the constraint that the desired source stay in the main beam. 

The other step size parameter, ßp(n), is more difficult to find since it is used to 

maximize the cross correlation between the beam and the estimated signal. One method 

that can be used is to sum the non-diagonal elements in row p. This can be written as 

ßP(n) = ß t\BM> (121) 

where ß is a constant. This will give an estimate of how independent beam p is compared 

to the other beams, which will determine if more adaptation is needed. 
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3.3 Wideband Independence Based Blind Beamformer 

BW 
The above method works well for narrowband signals, i.e.  « 1, where BW 

J c 

is the bandwidth of the signal and^ is the center frequency, but not for wideband signals. 

This results because the placements of the nulls, which are placed on the unwanted 

signals, are frequency dependent. If the signals are wideband, then only certain 

frequency components of the opposing signals will be attenuated. One way to overcome 

these effects for wideband signals is to bandpass the signals with a bandpass network, 

which converts the wideband signal into multiple 'narrowband' signals. Each array 

element is then bandpassed by a bandpass network resulting in multiple outputs, each 

with different frequency spectra. Now that the data is split up into frequency bins, 

beamforming can be performed separately for each bin. Figure 3.2 shows the block 

diagram for this wideband beamforming network. The output of all of the beamformers 

will be sent through a reconstruction network where they will be combined to give an 

estimate of the original signal. 
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Figure 3.2 - Wideband Blind Beamformer Network 

The placements of all of the nulls can also give an estimate of the multiple sources' 

directions. Since multiple blind beamformers are being used, the network will return 

multiple estimates of the locations, which can be used to get a more accurate estimate of 

the true locations by averaging over all frequency estimates. 

3.3.1 The Array 

For wideband signal processing, it is recommended that a wideband array be used. 

Xf 
A wideband array is simply an array with element spacing that is equal to d = — where 

Xfc is the wavelength that corresponds to the highest frequency component of the signal 

or the center frequency of the highest frequency bin. The lower frequency components 
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xf0 
will also be able to have d = —, where Xf0 is the wavelength for each frequency bin by 

using a combination of the elements. For example, in order to keep d0 = -J— for 

/ 
f0 = —-, then every other element will be used in the beamformer. The wideband array 

can be made less expensive if a desired number of elements, N, for each frequency bin is 

constant. The tradeoff to using fewer elements is that the full aperture is not used. 

Figure 3.3 is a diagram of such an array for N = 3 and for 3 frequency bins. 
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Figure 3.3- Wideband Array for JV=3 and for 3 Frequency Bins. 

3.3.2 The Bandpass Network 

The bandpass network is simply a network of bandpass filters with different 

frequency bands. The important part of this bandpass network is that the filters should 

have linear phases in order to preserve the original signals. Finite Impulse Response 

(FIR) methods can be used to create linear phase bandpass filters [28]. The only effect 

that linear phase filters have on signals is delays, which are dependent on the order of the 
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filters. The bandwidth of each filter can also increase with increasing center frequencies, 

BWccfc. 

3.3.3 The Blind Beamformers 

The blind beamformers can now work independently on the bandpassed signals, 

which are now considered narrowband signals. Since all of the filters are orthogonal in 

the frequency domain, the beamforming can be done in parallel. The only difference 

between the multiple beamformers is in the setup. Since beamformers for higher 

frequencies have smaller element spacing compared to lower frequencies, the induced 

delays due to propagation are smaller. The initial choice of delays should become 

smaller and the step size parameters, ju and ß, should be set smaller to compensate for 

this. This ensures stability for each beamformer and keeps the initial main beam 

response the same for all the beamformers. 

3.3.4 The Reconstruction Network 

Since all of the outputs from the individual beamformers have no delays, the 

reconstruction network is simply an adder. This is possible since the data from the 

beamformers is orthogonal and therefore can be summed. If delays were introduced in 

the network, then cross-correlation would need to be used to find the arbitrary delays. 
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3.3.5 The Direction Estimator 

Since, the blind beamformers work by steering nulls in the direction of the 

unwanted signals, it is therefore possible to estimate the direction of the signals by using 

these null locations. The direction of the sources can be estimated by using the position 

of the null that corresponds to the maximum from the other beam pattern. Since multiple 

beamformers are being used for different frequency components, multiple estimates are 

acquired from the beamformers. All of this information can be averaged together to get 

estimate if the directions of the sources. 
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Chapter 4.      Simulations and Results 

4.1 Overview 

In this chapter, results from many different types of simulations will be presented 

and discussed. All simulations were conducted in MATLAB with a sampling rate of 

88200 samples/second. All beamforming was done for a linear array in an azimuth plane. 

The first section compares the advantages of using step size parameter control in the ICA 

blind beamformer algorithm. The next section presents additional simulations including 

a simulation for a mixture of three sources. Additional sections will explore the effects of 

angle spacing between the sources, the performance for sources with unequal power 

levels and the effects of additive noise on the algorithm. The last section presents a 

simulation of a wideband directional noise signal and a wideband directional 

communication signal. 

4.2 Simulations 

4.2.1     Simulations With and Without Step Size Parameter Control 

The first simulation was set up for testing the adaptive algorithm, as presented in 

Chapter 3, for narrowband signals. Two independent colored noise sources were made 

with a bandwidth of 3250-3750 Hz. White noise sources were made with uniform 

distributions and then bandpassed. The resulting sources had sub-Gaussian3 distributions. 

The simulation was setup with j, (n) in the far field at an angle of+15° and s2 (n) in the 

3 Sub-Gaussian Distributions are defined as having a longer tail compared to Gaussian distributions. They 
are also defined as having positive kurtosis. 
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far field at an angle of-15° perpendicular to the vertical array. The array had an element 

spacing, d = 0.2m, which corresponds to half the wavelength of a 3750Hz sinusoidal 

wave. A three-element array was used for the following simulations. The fixed beam 

pattern without steering is shown in Figure 4.1. The signal to interference ratio (SIR) for 

a fixed beam pattern with a maximum at 0° is OdB for both sources since both signals 

vai(signal) 
were set with equal variances, where SIR 

vai(interference) 

Figure 4.1 - Fixed Beam Pattern for a Three-Element Array. 

The first simulation was performed by using the algorithm in Equation 3.17. The 

step size parameters were set to ßp{n) = 0.01 and ßp(ri) = 0.01. The BSS step size 

parameter, JUBSS, for this simulation and for all of the following simulations was set to 

MBSS 
= 0.0005. The learning curve for this simulation is shown in Figure 4.2a. The 

ending delays were found to be d] = -5 and d2 = +5. As can be seen in the plot, the 

delays did not converge until approximately 15,000 iterations. Today, with dedicated 
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chips, these iterations can be performed for every sample. Under this assumption, this 

algorithm converged after approximately 170ms. 
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Figure 4.2 - Learning Curves for the (a) Simulation 1 (b) Simulation 2. 

The signal to interference signal ratio (SIR) for the estimate of j, («) was 20dB 

while the SIR for j2 («) was 20dB from the output of the beamformers. The estimate of 

the direction was found by finding the placement of the nulls in the beam patterns and the 

corresponding maximums. For the beam one, the maximum was located at 26° and the 

nulls were located at -90 ° and -17°. For beam two, the maximum was located at -26° and 

the minimums were located at 90° and 17°. By using the logic that the direction of the 

signal is located at the null that is closer to the corresponding maximum from the other 

beam pattern, it can be estimated that s\ is located at 17° and s2 is located at -17°. 

Another simulation was performed using the algorithm given in Equation 3.19, 

which uses the elements of the unmixing matrix for step size parameter control. The 

same signals that were used in the previous simulation were again used. The step size 

parameters were set to ßp (») = 0. \Bpi (n) and //, (») = -0.055,, (»), where p is the beam 
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number, and Bpt (n) is a non-diagonal element from the unmixing matrix, B, at time n. 

The learning curve for the algorithm is shown in Figure 4.2b. As can be seen in the plot, 

the delays converged after approximately 10,000 iterations (114ms), which was an 

improvement compared to above. The ending delays were found to bed, = -5 and 

d2 = +5. 

The SIR for the estimate of sx (n) was 20dB while the SIR for s2 (n) was 20dB. 

These numbers do not reflect the additional gain that the BSS algorithm provided. The 

SIR including the effects of BSS resulted in an average SIR of s,(w) is 30dB while the 

SIR for 52 (w) is 30dB. This is a large improvement compared to the SIR that resulted in 

the fixed beam pattern. Figure 4.3 shows a plot of the windowed SIR for the output of 

the beamformers and the BSS algorithm. It can be seen that the SIR ratio increased much 

quicker for the BSS outputs than the beamformer outputs. Even though the delays did 

not converge until approximately 10,000 iterations (113ms), the SIR improved to above 

15dB after 3000 iterations (34ms).   For this situation the BSS algorithm not only helped 

steer the beams, but it also provided additional SIR gain. 
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Figure 4.3 - Plot of SIR for (a) Beam 1 and (b) Beam 2 for Simulation 2. 

The directions of the sources were again found using the same method as before. 

For beam one, the maximum was located at 26° and the minimums were located at -90 

and -17°. For the beam two, the maximum was located at -26° and the minimums were 

located at 90 and 17°. By using the same logic as before, it can be estimated that s\ is 

located at 17° and s2 is located at -17°, which were again accurate. 

A plot of the resulting step size parameter, ///(«), is shown in Figure 4.4 for both 

simulations. It can be seen that jui(n) was large when the delays were far from the 

optimum solution and was set smaller when the delays were near optimum. The same 

thing happened for the other step size parameters, fifct). In the first simulation, the step 

size parameters were set to constants. 
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Figure 4.4 - Step Size Parameter, Mt(n), for Simulation 1 and Simulation 2. 

It was shown in the previous simulations that both methods converged properly. 

Both simulations demonstrated large improvements in SIR compared to fixed 

beamforming. It was also shown that the second method as presented Chapter 3.2.4, 

which used adjustable step size parameters, sped up convergence and required less 

computing power. For the rest of this thesis, all additional simulations will use the 

adjustable step size parameters. 

3.2.2   Additional Simulations 

A third simulation was performed with the sources in different locations. This 

simulation used the same sources as above with s{ (n) in the far field at an angle of +37° 

and s2 (n) in the far field at an angle of 0° perpendicular to the vertical array. The array 

again had an element spacing, d = 0.2m, which corresponds to half the wavelength of a 

3750Hz wave. The step size parameters were set to ßp («) = 0. \Bpi (n) and 
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jj (M) = -0.055 , (n), where p is the beam number, and Bpi («) is the non-diagonal 

elements from the unmixing matrix, B. The SIR of the sources for a fixed beam pattern 

with a maximum at 0° is SIR = 12dB for sx («) and SIR = -12dB for s2 (n). 

The learning curve for the algorithm is shown in Figure 4.5(a). As can be seen in 

the plot, the delays converged after approximately 20,000 iterations (227ms). The ending 

delays were found to be^ = -9 and d2 = +2. The SIR for the estimate of sx (n) for the 

ending delays was 22dB while the SIR for s2 («) was 21 dB. This was a large 

improvement for both signals compared to the SIR for fixed beamforming. 
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Figure 4.5 - (a) Learning Curves and (b) Step Size Parameter, n,(h), for Simulation 3. 

Figure 4.6 shows a plot of the SIR over iteration time for both outputs. It can be seen that 

BSS did not improve the estimate of s, («) in early iterations, but it did improve the 

estimate of s2 (n) for almost all iterations. 
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Figure 4.6 - Plot of SIR for (a) Beam 1 and (b) Beam 2 for Simulation 3. 

The algorithm also provided an estimate of positions of the sources. For the beam 

one, the maximum was located at 51° and the minimums were located at 6° and -34°. For 

beam two, the maximum was located at -10° and the minimums were located at 31 and 

-57°. A plot of these beams can be seen in Figure 4.7. It can again be estimated that s\ is 

located at 31° and 52 is located at 6°. 
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60 
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Figure 4.7 - Beam Patterns for (a) Beam 1 and (b) Beam 2. 

52 



To show that the algorithm in Equation 3.20 works for more than two sources, a 

simulation was performed with three sources. Three equal variance independent signals 

with the same distributions were located at +37°, +14° and -27°. The signals were 

colored noise signals with frequency components from 3250 to 3750 Hz. A five element 

array was used in this simulation and had an element spacing of d = 0.2m. A five- 

element array was used because it gave a smaller main beamwidth and had more nulls 

compared to a three-element array. The fixed beam pattern without steering is shown in 

Figure 4.8. The SIR of the sources for a fixed beam pattern with a maximum at 0° is SIR 

= -7dB for $,(»), SIR = 7dB fors2(«) and SIR = -21 dB for s3(n). 

Figure 4.8 - Fixed Beam Pattern for a Five-Element Array 

The initial delays were set to dx = -5, d2 = 0 and d3= 5. The step size 

parameters were set to ßp (w) = 0.02 £ \Bpi (n)\ and npi (n) = -0.0\Bpi (»), where p is the 
/=I(/*P) 

beam number, i is the opposing beam of interest, and Bpi(n) is a non-diagonal element 

from the unmixing matrix, B. 
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The learning curve for the algorithm is shown in Figure 4.9. As can be seen in the 

learning curve, the delays converged at approximately 15,000 iterations (180ms). The 

first delay converged to dx = - 8 while the other delays fluctuated from d2 = -2 to - 3 and 

d3 = 5 to 6. The SIR for the ending delays of the estimated signals, s, («), s2 (n) and 

£3(w) were 14dB, 15dB and 13dB respectively. The outputs of the integrated BSS 

algorithm, «,(«), u2{n) and w3(«), had ending SIRs of approximately 21 dB, 26dB and 

21 dB respectively. This again was a dramatic improvement in SIR compared to the fixed 

beam pattern. By using the same method as in the last section for estimating the 

directions of the sources, the direction estimates were +46°, +20° and -32°, respectively. 

0        0.5 1 1.5 

ITERATIONS (x 10 ) 

Figure 4.9 - Learning Curve for Three-Source Simulation. 

Figure 4.10(a) below shows a portion of the mixed signal from element 3. Figure 4.10(b) 

shows the estimated signal, u2{n), for the same time period as in Figure 4.10(a). Figure 

4.10(c) is the actual signal, s2 (n), again for the same time period. The similarities 

between the estimated and actual signals can be easily seen from this plot. 
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Figure 4.10 - (a) Plot of an Array Element, (b) Plot of the Estimated Source and (c) Plot of Actual 
Source. 

4.2.3   Angle Spacing Effects on Separation 

Additional simulations were performed in order to illustrate the performance of 

the algorithm as the angle spacing between the sources grew smaller. These simulations 

were performed for two independent colored noise signals with frequency spectra 

between 2250-2750 Hz.  A five-element array was used in this simulation with element 

spacing of 0.27m. The beam width for the main beam in the five-element array is 

approximately 21°. 

Figure 4.11 shows the resulting performance curve for different angle spacing. It 

can be seen that the SIR of the beamformer outputs, i, («) and s2 («), begins to break 

down when the angle spacing is equal to the beamwidth of the main beam - in this case 

21°. It can also be seen that after the source spacing became smaller that 6°, the 

algorithm couldn't further separate the sources. It can also be seen that the addition of 

BSS greatly increased the SIR of the estimated outputs. The BSS algorithm removed any 

additional mixing that the algorithm could not remove. 
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Figure 4.11 - SIR of the Output from Beam 1 vs. the Angle Separation of the Sources. 

4.2.4   Performance for Sources with Unequal Power Levels 

All of the above simulations were performed for sources with equal power levels. 

This section explores the performance of the algorithm for sources with different power 

levels. These simulations were performed for two independent colored noise signals 

located at +14 and -14 with frequency spectra between 3250-3750 Hz.   A three-element 

array was used in this simulation with element spacing of 0.2m. 

Figure 4.12(a) shows a plot of the SIR improvement from the ICA blind 

beamformer for SIR ratios of the original sources. It can be seen that the most SIR 

improvement from the algorithm came when the SIR was near OdB. It can also be seen 

that the algorithm did more to improve signals that had the least power than signals that 

had the most power. This occurs because the algorithm can easily place a null in the 

direction of a high power source because the gradient is large. It was more difficult for 

the algorithm to null out the sources with less power because the beam already had very 

small amounts of the opposing signal. Because of this, the gradient was very small which 
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prevented the beam from being moved to its ideal location.   Figure 4.12(b) shows a plot 

of the estimated angles over the SIR ratios of the original sources. It is seen that the 

estimated angle of the sources with low power was less accurate. The reason for this is 

that there was not enough power from the low-power source to move the null in its 

direction. 
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Figure 4.12 - (a) SIR Improvement over Original SIR and (b) Estimated Angles for Source at +14° 
Over Original SIR. 

4.2.5    Performance with Additive Noise 

All of the above simulations were performed without any additive noise. This 

section will explore the effects of the addition of independent noise to the individual 

elements of the array. In real world applications, additive noise is an effect that cannot be 

ignored. This additive noise can be omni-directional noise in the environment that is 

different at each element, noise from the individual elements or electrical noise from the 

equipment. Whichever the case, this noise limits the performance of the applications. 

The algorithm presented in this thesis only removes directional noise sources. 
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Many simulations were performed for this section with different levels of additive 

noise. The additive noise used in this section was white Gaussian noise (WGN) with zero 

mean. The directional signals were again colored noise with frequency components 

again from 3275-3750Hz. Source one was located at -37° and source two was located at 

0°. Before the data was sent through the blind beamforming algorithm, the data was 

bandpassed to remove the effects of the noise outside of the band. Figure 4.13(a) shows a 

plot of the signal to interfering signal ratio (SIR) of both signals over different signal to 

noise ratios (SNR) of the additive noise. The SNR is the ratio of the variance of the 

bandpassed noise signal added to one element over the variance of one of the original 

sources. The performance of the algorithm continually declines over all SNRs. Figure 

4.13(b) shows a plot of the signal to noise and interference ratio (SNIR) or both signals 

var(signal) 
and the theoretical bound. The SNIR is defined as SNIR 

vai(noise) + var(interference) 

A constant decrease is shown and is expected because no attempt is made to remove the 

effects of the additive noise. 
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Figure 4.13 - (a) SIR between Opposing Signals vs. Additive Noise Levels and (b) SNIR of Estimated 
Signals vs. Additive Noise Levels. 
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4.2.6    Simulation for Wideband Signals 

The simulations in the above section were done with narrowband signals. This 

section will use the wideband network as described in Chapter 3.3 to separate wideband 

directional signals. A 2kHz modulated digital communications signal using frequency 

shift keying (FSK) was created. Two carrier frequencies were used and located at 

3000Hz and 5000Hz. This signal was located at +14°. Colored noise was also created 

with frequency spectra from 2kHZ to 6kHz and located at -14°. Additional independent 

white Gaussian noise with an in-band variance of 0.1 was added to the output of each 

element to simulate the effects of imperfect elements. A three-element array was used in 

this simulation. 

A bandpass filter network was used to convert the wideband signal into multiple 

narrowband signals with different frequency components. A wideband array was also 

used with three elements for every frequency component. Table 4.1 below lists the entire 

setup. 

Table 4.1 - Setup for Wideband Simulation. 

Bandwidth 
(kHz) 

Element 
Spacing (m) 

Step Size 
Parameter, ß 

Step Size 
Parameter, ju 

Starting 
Delays 

Initial 
SIR (dB) 

2.00-2.50 0.30 0.1 B(iJ)\ -0.05B(ij) +4,-4 -3.8 

2.50-3.00 0.25 0.1\B(ij)\ -0.05B(i,j) +3,-3 -0.5 

3.00-3.75 0.20 O.lBflJ) -0.05B(ij) +3,-3 1.9 

3.75-4.50 0.17 0.05 Bfij) -0.025B(ij) +2,-2 -4.0 

4.50-5.25 0.14 0.05WJ) -0.025B(i,j) +2,-2 2.1 

5.25-6.00 0.12 0.05 B(i,j)\ -0.025B(i,j) +1,-1 -4.5 

Different beams were adaptively found for each frequency bin. The outputs of all of the 

beams were then summed to form estimates of both the noise and communications signal 

separately. Table 4.2 shows the end results of the individual blind beamformers without 

compensating for the additional gain from the BSS algorithm. 
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Table 4.2 - Results From Wideband Network. 

Bandwidth 
(kHz) 

Delay 1, 
d, 

Delay 2, 
d2 

Estimated 
Direction of 
Beam 1 

Estimated 
Direction 
of Beam 2 

SIR Beam 
l(dB) 

SIR Beam 
2 (dB) 

2.00-2.50 -5 8 23 -13 12 14 
2.50-3.00 -6 6 15 -15 16 14 
3.00-3.75 -6 4 19 -9 17 12 
3.75-4.50 -3 5 10 -21 14 15 
4.50-5.25 -4 3 18 -11 25 14 
5.25-6.00 -2 3 7 -15 14 17 
2.00-6.00 - - 15 -14 14 14 

The estimates of the locations were very accurate. Additional gain came from the BSS 

algorithm. This gain can be found in Table 4.3. 

Table 4.3 - SIR for Algorithms With and Without BSS. 

Bandwidth 
(kHz) 

SIR Beam 1 
(dB) 

SIR Beam 1 
(dB) 

SIR Beam 1 
(dB) (w/ BSS) 

SIR Beam 2 
(dB) (w/ BSS) 

2.00-2.50 12 14 19 21 
2.50-3.00 16 14 26 26 
3.00-3.75 17 12 14 25 
3.75-4.50 14 15 17 15 
4.50-5.25 25 14 22 16 
5.25-6.00 14 17 16 20 
2.00-6.00 14 14 17 18 

From the table above, it can be shown that integrated BSS increased the SIR for both the 

noise and the communications signal. The SIR of the noise signal estimate increases by 

3dB and the SIR of the communications signal increased by 4dB. 

The output signals were found to be independent as expected. Figure 4.14(a,b) 

shows plots of the linear and non-linear cross-correlation between both beam outputs and 

similar plots between the original signals.   It can be seen that the beam outputs become 

more independent as the number of iterations increase. Figures 4.14(c,d) show plots of 

the nonlinear cross correlation between the original signals and the estimated signals. It 

can be seen that after approximately 4000 iterations (45ms), the estimated signals 
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converged to the original signals. These plots were created by using a sliding 3000-point 

hamming window. It should also be noted that since a finite number of data was used, 

the plots fluctuate. 
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Figure 4 14 - (a) Linear Cross Correlation of Actual Sources and BSS Outputs, (b) Nonlinear Cross 
Correlation of Actual Sources and BSS Outputs, (c) Nonlinear Cross Correlation Between the Actual 
and Estimated Noise Source and (d) Nonlinear Cross Correlation Between the Actual and Estimated 

Communication Signal 

Since a digitally modulated signal was used for this simulation, the estimated 

signal can be demodulated and compared to original bit stream. An envelope detector 

was used to detect the FSK signal. Bandpass filters were used to retrieve the information 

located at 3kHz and 5kHz. The outputs of the bandpass filters were then sent through the 

envelope detector and then sampled every 44 samples. A comparator was used which 
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worked to determine the bit by selecting the output of the filters that had a larger 

amplitude. This method was performed on multiple sets of data. The signal from a fixed 

beam located at 0° was demodulated and plotted in Figure 4.15(a). This signal did little 

to remove the noise signal and therefore had a combination of both signals. This resulted 

in over 50 bit errors in 400 bits of information. The outputs of the beamformer, s, («), 

was also demodulated and the error plot is shown in Figure 4.15(b). Only four errors 

resulted which was a dramatic improvement from the raw mixture data. The output of 

the BSS algorithm, w, (ri), was also demodulated and the error plot is again shown in 

Figure 4.15(c). Only one bit error was resulted which was a slight improvement from the 

results from the outputs of the beamformer themselves. 
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Figure 4.15 - Bit Error Plots for (a) No Processing, (b) Outputs From the Beamformers and 
(c) Outputs From the BSS Algorithm. 
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4.2    Conclusions 

The algorithm as presented in Equation 3.18 was shown to work for various 

situations. Many simulations were performed on narrowband signals with different 

locations. All of these simulations resulted in accurate estimates of the original signals 

and of their directions. The algorithm showed strong levels of noise immunity and was 

shown to separate signals that were separated by only 6° using a five-element array. 

Another simulation was performed on two wideband signals propagating from different 

directions. The wideband network, as discussed in Chapter 3.3, was used and performed 

well in separating the signals. The directions of the sources were again found and 

estimates of the signals were found to be relatively clean. It should be noted that this 

thesis did not focus on speeding up the convergence time; however, it did speed up the 

separation process by utilizing BSS. 
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Chapter 5.     Conclusions and Future Work 

5.1     Future Work 

The algorithm that was presented in this thesis worked for sources that were 

statistically independent. However, in many underwater environments, these signals may 

not be independent since some of these signals can be reflections of each other. If the 

signals are reflected, then they will appear to be propagating from different directions. It 

can sometimes be assumed that the time differences between the reflections and the 

original signal are larger than the correlation time of the signals. If this assumption is 

true, then the signals will appear statistically independent. This assumption, however, 

may not be always true. It is possible that multiple reflections occur and arrive at the 

array at the same time. If this happens then the algorithm will be confused and may not 

adapt correctly. Additional work can be continued in order to address this problem. 

Another possible research area for a continuation of this thesis is to improve the 

algorithm to allow the element weights to be adapted along with the element delays. This 

could possibly increase performance and possibly speed up convergence. This can also 

be taken a step further by using the narrowband assumption and adjust complex weights 

instead of delays. This would become less complex because derivatives would not need 

to be calculated. The sampling rate could also be smaller compared with time-delay 

beamforming because phase shifts are used instead of time shifts. Consideration must be 

made in this continuation to make sure that no delays are formed in this process, which 

can create an artificial independence. 
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5.2     Conclusions 

The problem that was addressed in this thesis was to separate unknown 

independent signals that propagate from unknown directions. The goal of this thesis was 

to develop an algorithm to find these unknown directions and return an estimate of the 

corresponding unmixed signals. It was shown that current algorithms did not solve this 

problem of separating multiple signals and finding their directions when no a priori 

knowledge is known about the signal waveforms and their directions.   Some of these 

algorithms used specific assumptions about the sources such as cyclostationarity and 

constant modulus. These assumptions cannot be applied to unknown passive sources, 

since this information is unknown. Some of these algorithms worked by using power as a 

criterion, which worked to find the signal with the most power, but did not separate 

multiple signals.   Other algorithms were developed to estimate the signals, but did not 

estimate their directions. The algorithm presented in this thesis was a continuation of 

many of these methods and was designed to solve the problem as stated above. 

Preliminary work has demonstrated that the algorithm successfully separated 

signals when no a priori information was known about the sources waveforms and their 

directions. It was also shown that the incorporation of BSS improved convergence time 

and also improved the SIR of the estimated signals. A wideband network was also used 

successfully to expand the algorithms to work with wideband signals.   Overall, this 

algorithm has shown great promise in solving the problem of blind beamforming for 

unknown passive sources. 
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